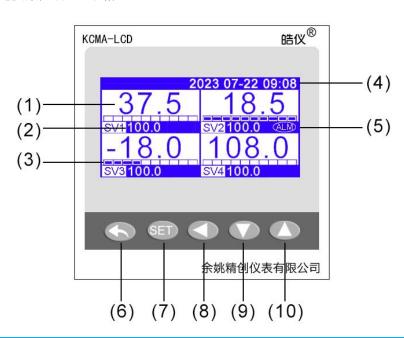
KCM-LCD 系列多路智能温度调节仪使用说明书

(使用此产品前,请仔细阅读说明书,以便正确使用,并请妥善保存,以便随时参考)

一、概述:


KCM-LCD 型仪表是多路温度控制仪,可同时配接多路传感器,传感器输入类型可选,独立的自整定模式和 PID 参数,同时控制多路温度,整机控制性能精确可靠。多路控制输入输出可以 4-20mA 或 0-10v 模拟量,可以切换为变送输出或 PID 输出。

二、技术指标:

- 1、输入类型: CU50 (-50.0℃~150.0℃)、Pt100 (-199.9℃~600.0℃)、 K (0℃~1300℃)、E (0℃~700.0℃)、J (0℃~1200.0℃)、T(0℃~400℃)
- 2、输出信号: 继电器(220V <3A 阻性负载)、固态继电器、4-20mA 或 0-10v 等模拟量(由硬件决定)
- 3、测量精度: ±0.5%F·S±1 字, 冷端补偿误差≤±2℃
- 4、工作电源: AC85~242V 50/60Hz 功耗: 小于 5W
- 5、工作环境: 0~50℃,相对湿度≤85%RH,无腐蚀性及无强电磁辐射场合

三、面板说明(参考):::

- (1) PV 显示窗:显示实时测量值如:温度、压力、液位、湿度等视传感器而定。
- (2) SV 显示窗:显示设定值,同 PV 显示窗一致共有 4 组。
- (3) 进度条:实时显示主控输出百分比,进度条共有10小格。
- (4) 系统时间: 当仪表带有记录功能时, 显示系统时间,反之不显示系统时间。
- (5) ALM 指示灯: 当此字符出现时代表 当前通道报警继电器有输出。
- (6)返回按键:参数设定状态下,按此键可退回主界面。
- (7)功能键:按键3秒可进入参数修改状态;。
- (8)移位键:在修改参数状态下按此键可 实现修改数字的位置移动;按3秒可进入 或退出手动调节。
- (9) 数字减小键:在参数修改、设定值修改或手动调节状态下可实现数字的减小。
- (10)数字增加键:在参数修改、设定值 修改或手动调节状态下可实现数字的增加。

四、仪表内部参数及符号:

表 4-1

序号	提示符	名称	设定范围	说明	出厂值
一级菜单 (公共参数)					
0	0 LOCK 密码锁 0~50 密码锁为 18 时,允许修改所有参数, 不为 18 时禁止修改所有参数		18		

	1	1			
1	SN	输入规格		热电阻:CU50(\overleftarrow{L} \underline{U})、PT100(\overleftarrow{P} \overleftarrow{L}) 热电偶:K(\overleftarrow{L})、E(\overleftarrow{L})、J(\overleftarrow{J})、T(\overleftarrow{L})	
'	SIN	刊/ 次价	-	然电偶: K(L)、E(L)、J(J)、I(L) 4-20mA(需硬件支持)	-
2	ОРВ	通信开关	0~1	'0'无输出; '1'RS232或RS485通讯信号;	-
3	ADDR	地址	0∼255	仪表通信地址即站号	1
4	BAUD	波特率	0 0	0: 1200; 1: 2400;	0000
4	_		0~3	2: 4800; 3: 9600	9600
5	CF	温度单号	CF	C 摄氏度 F 华氏度	
	T	T	二级菜具	単(各通道参数)	
6	SP	设定值		每一通道控制点温度设定值	-
_	1137). <u>12 m</u> 24	0.4 = 0.0	仪表为位式控制方式时的不灵敏区,取值越小,控	4.0
7	HY	主控回差	0.1~50.0	制效果越好但当为继电器输出时因频繁跳动而影响使用寿命	1.0
8	ALH	报警设定值			
9	AL	报警设定值			-
10	AHY	报警回差	0.1~50.0		
11	SC	误差修正	-50.0~50.0	测量传感器引起误差时,可以用此值修正	0.5
11	30	庆 左 [6] 止	-30.0 - 30.0	一	0.0
12	Р	比例系数	0~200.0	例的作用越小,过冲越小,但太小会增加升温时间。	8
	-			P=0 时,转为二位式控制。	-
13	ı	积分时间	0~9999	积分时间,以解除比例控制所发生之残余偏差,太大	10
	•	D 103 m3 F 3		会延缓系统,达到平衡的时间,太小会产生波动	
14	D	微分时间	0~250	设定微分时间,以防止输出的波动,提高控制的稳定 性	10
15	Т	控制周期	1-120S	指主控为智能 PID 控制方式的控制周期。	10
16	U0	初始功率	0-100	PID 智能控制时的初始输出功率	10
17	AT	自整定开关	0~1	OFF: 关闭自整定 ON: 开启自整定	0
18	PBH	变送上限	PS-L∼9999	变送输出时的测量值上限	9999
19	PBL	变送下限	0 ∼PS-H	变送输出时的测值值下限	0
20	OP	输出类型	0~8	参见表 4-2	0
21	ALP	报警方式	0∼8	参见表 4-3	0
00	DE	准件工料	0.00	为仪表一阶滞后滤波系数,其值越大,抗瞬间干扰	20
22	PF	滤波系数	0-80	性能越强,但响应速度越滞后。	20
23	PSH	量程上限	PS-L∼9999	电流电压信号输入时的显示量程上限	9999
24	PSL	量程下限	0 ∼PS-H	电流电压信号输入时的显示量程下限	0
25	DP	小数点	0~3	小数点位置	1
26	OUTH	输出上限	OUTL~220	可实现主控输出功率或变送输出的最高与最低限幅	200
27	OUTL	输出下限	0∼OUTH	如限定 0-20mA 4-20mA 0-10mA 等	40
	1	I	I.	ı	

4.1 主控输出为继电器、固态继电器输出时上下限控制设定:

主控(OUT 端子)上下限控制设定:					
输出条件	基本参数	OUT 断开	OUT 吸合		
低于设定值有输出	P=0; OP=0;	测量值≥SP	测量值≤SP-HY		
高于设定值有输出	P=0; OP=1	测量值≤SP	测量值≥SP+HY		

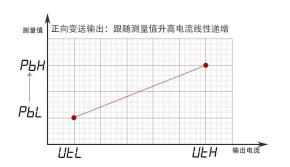
SP, HY, P, OP 参数请参照表 4-1 序号第 6,7,12,20 参数

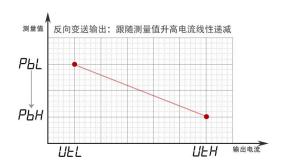
注: 1.以上参数设定对仪表侧面所标 OUT 为继电器输出时有效。

2.仪表 PV 窗口显-HH-或-LL-时表示传感器有故障,-HH-即传感器超量程上限,如断偶显示为-HH-,-LL-即传感器低于量程下限,如 4-20mA 变送器信号给仪表小于 4mA 仪表会显示-LL-。

例 1 测量值低于设定值输出: 测量值低于 90 时 OUT 继电器输出,测量值高于 100 时 OUT 继电器关断,参数设定为: SP=100,HY=10,OP=0,P=0。

例 2 测量值高于设定值输出:测量值高于 100 时 OUT 继电器输出,测量值低于 90 时 OUT 继电器关断,参数设定为: SP=90,HY=10,OP=1,P=0。


4. 2. 1 主控输出为模拟量 4-20mA/0-10V 输出时的几种方式如下表:


表 4-2

OP 这参数每通道都有是输出方式选择,比如把第一第二路路 OP 分别设为 7 和 5,这样 OUT1 输出的是				
2 路绝对值温差的变送信息	号,OUT2 输出的是	是两路温度的平均值变送信号。		
主控输出方式	控制类型	说明		
0:加热 PID	OP=0	当前通道独立正向 PID 控制,仅与当通道测量值有关		
1:制冷 PID	OP=1	当前通道独立正向 PID 控制,仅与当通道测量值有关		
2:变送输出	OP=2	当前通道测量值变送输出,变送上下限由 PBH,PBL 决定		
3:最大值变送输出	OP=3	取所有通道的最大值变送输出, PBH,PBL 决定变送上下限		
4:最小值变送输出	OP=4 取所有通道的最小值变送输出, PBH,PBL 决定变送上下限			
5:平均值变送输出	OP=5 取所有通道的平均值变送输出,PBH,PBL 决定变送上下限			
6:温差变送输出	OP=6	取 PV1-PV2 或 PV3-PV4 之差变送输出, PBH,PBL 决定上下限		
7:温差绝对值变送输出	OP=7	取 PV1-PV2 或 PV3-PV4 之差的绝对值变送输出, PBH,PBL 决定上		
7. 鱼左纪刈但文丛棚山	OP=7	下限		
8:温差 PID 正向控制	OP=8	使 PV1-PV2(或 PV3-PV4)的差值恒定在 SP(设定值)这个点位上		
O	01 =0	正向控制,当有输出时 PV1-PV2(或 PV3-PV4)的差值变大。		
9:温差 PID 反向控制	OP=9	使 PV1-PV2 (或 PV3-PV4) 的差值恒定在 SP (设定值) 这个点位上		
		反向控制,当有输出时 PV1-PV2(或 PV3-PV4)的差值变小		
PV1~PV4 为每一路的测量值,其它参数请参照表 4-1 18:OP,19:PBH,20:PBL				

4.2.2 变送正向和反向输出:

PBH PBL 决定温度上下限, UTL UTH 决定输出电流大小如 UTL=4, UTH=20mA. OP 决定变送输出方式。 PBH 大于 PBL 时为正向输出,反之则为反向输出,如下图所示

参数: PbH PbL ULL ULH 见表4-1序号 19,20,26,27。测量值由OP(表4-1序号18)这个参数决定,可以当前测量值,两路温差值,多路平均值等

4.2.3 输出举例: 第 1 路和第 2 路温度差 10 度时输出 4mA,差 5 度时输出 20mA,即温差越大输出越小,输出电流在 OUT1 端子上实现。需要修改以下三个参数:

OP=7(第一路的 OP 参数值): 绝对值温差信号。

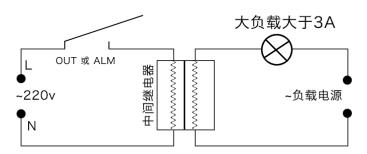
PBH=5: 温差小于等于 5 度时输出 20mA,PBL=10: 温差值大于等于 10 度时输出 4mA。

要哪个 OUT 输出就改哪一路的参数,本案例要求 OUT1 上输出所以只改第一路的参数就行。

反之要求温差越大输出越大则改成 PBH=10, PBL=5: 5 度以下输出 4mA,10 度以上输出 20mA,5~10 度之间线性变化,即随着温差变大输出的电流信号也变大直到 20mA。

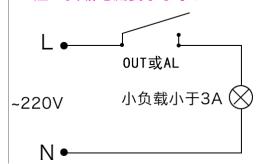
4.3.1 报警方式(选配)报警继电器容量(220V < 3A 阻性负载):

表 4-3


报警方式说明 <mark>以第一通道报警设定为例</mark>					
报警方式	报警参数	报警开启	报警取消		
1:上限报警	ALP=1	PV1≥AL	PV1< AL — AHY		
2:下限报警	ALP=2	PV1≤AL	PV1> AL + AHY		
3:正偏差报警	ALP=3	PV1≥SP + AL	PV1< SP + AL - AHY		
4:负偏差报警	ALP=4	PV1≤SP - AL1	PV1>SP - AL + AHY		
5:区间外报警	ALP1=5	PV1≤AL 或 PV1≥ALH	AL1 + AHY < PV1 < ALH - AHY		
6:区间内报警	ALP1=6	AL≤PV≤ALH	PV1< AL - AHY 或 PV> ALH + AHY		
7:温差上限报警	ALP1=7	PV1 - PV2≥AL1	PV1 - PV2< AL1 - AHY		
8:温差下限报警	ALP1=8	PV1 − PV2≤AL1	PV1 - PV2> AL1 + AHY		

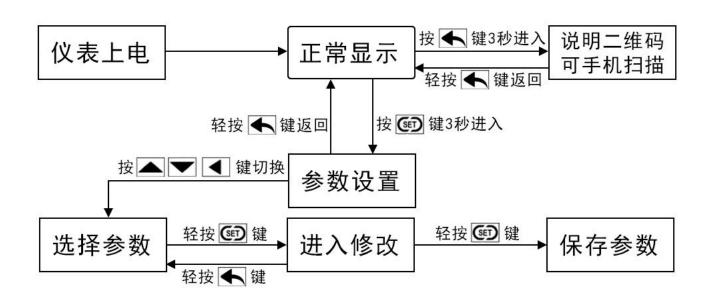
PV1 PV2 为第一路第二路的测量值,其它参数参照表 4-1 6: SP, 8: ALH, 9: AL, 10: AHY, 19: ALP

4.3.2: 报警接线方式


ALM 继电器接中间继电器示意图

注: 负载电流大于3A时请用这个接线方式

ALM 继电器接负载示意图

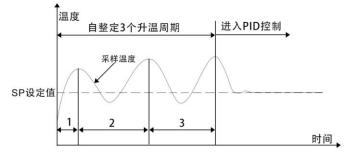

注: 负载电流要求小于3A

五、基本设置及操作:

- 1、正常使用中, 仪表液晶面板上同时显示 4 个通道的测量值、设定值和报警状态。
- 2、进入参修改:按 SET 键 3 秒,可进入参数菜单(详见表 4-1)每页显示 4 条参数,按▼键或▲键,依次切换菜单,按键 ◆键即可翻到下一页或上一页的参数,按◆键(返回键)可退出菜单。
 - 3、修改参数值:

按 SET 键进入修改参数状态, 然后按▼、 ▲、■进行修改, 修改完成以后按 SET 键保存并退出修改状态; 按↔键(返回键)放弃保存并退出修改状态。

六、自整定操作:


仪表首次在系统上使用,或者环境发生变化,发现仪表控制性能变差,则需要对仪表的某些参数如 P、I、D等数据进行整定,省去过去由人工逐渐摸索调整,且难以达到理想效果的繁琐工作,具体时间根据工况长短不一,以温度控制为例,方法如下:

正确连接好控制设备如:加热板,和温度传感器如:PT100。保证仪表可以正常控制加热设备,并可采集显示被加热对象的实时温度。

进入二级菜单,首先设置好设定值 SP,再将回差 Hy 设为 0.5~1 左右,最后将 AT 参数值设置为 on,仪表进入自整定状态。整个周期估计在 20-60 分钟不等,

具体由控制设备升降温度速率决定。

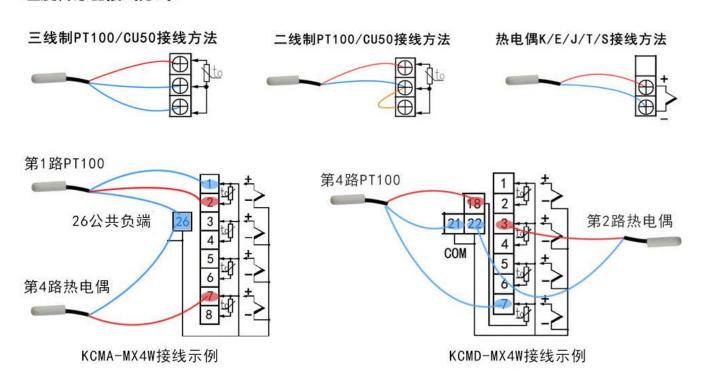
自整定过程中: N 通道上 AT 字符和测量值交替显示,此时仪表为位式控制,全程无需人工干预。经过三次自动上下振荡之后,仪表确定出新的 P、I、D 参数并自动保存。N 通道上 AT 字符消失, AT 参数值自动变为 OFF,仪表复位进入最佳 PID 控制状态。

注: ①仪表整定时中途断电,因仪表有记忆功能, 下次上电会重新开始自整定。

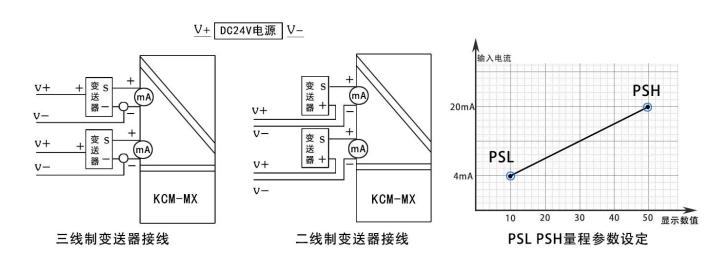
- ②自整定中,如需要人为退出,将自整定参数 AT 设置为 OFF 即可退出,但整定结果无效。
 - ③为达到自整定最佳效果,建议四个通道分时段自整定。

七、故障分析及排除:

KCM-LCD系列仪表采用了先进的生产工艺,出厂前进行了严格的测试,大大提高了仪表的可靠性。常见的故障一般是操作或参数设置不当引起的。若发现无法处理的故障,请记录故障现象并及时通知当地代理商或者与我们联系。表7-1是KCM-LCD系列仪表在日常应用中的几个常见故障:


表7-1 常见故障处理

故障现象	原因分析	处理措施
1. 信号显示与实际不符	1、传感器型号不匹配	1、检查传感器类型与仪表TS参数是否对应
2. 显示'HH''LL'	2、信号接线错误	2、检查传感器接线


附 1: 仪表信号输入和控制输出接线方式(仅供参考,以实物为准):

- 1.接入传感器前先修改仪表 SN 参数值,该值为所接入传感器的类型,参看"表 4-1 序号 1: SN"
- 2.如果输入类型为 4-20mA 等模拟量信号,还要根据变送器所示量程修改仪表参数 PSH、PSL。参看"表 4-1 序号23 和 24"

温度传感器接线方式:

附 2: 变送器接线方式及量程设定

附 3: 仪表与上位机基于 Modbus-RTU 协议通讯(选配功能):

1、接口规格

为与 PC 机或 PLC 联机以集中监测或控制仪表,仪表提供 RS485 或 RS232 通讯接口,光电隔离,最多能接 255 台仪表。

2、通讯协议

- (1)通讯波特率为1200、2400、4800、9600四档可调,数据格式为1个起始位、8个数据位,1个停止位,无校验位。
- (2) 向仪表读取寄存器里的数值。一应一答格式具体如下:

第1步: 主机向仪表发读某寄存器指令:

仪表地址	功能代码(固定 03)	寄存器地址	寄存器个数(<20)		CRC16	
主机向仪表发送读指令: 010310010001D10A						
指令解释:	01(仪表地址)03(功能作	代码) 1001(仪表	测量值寄存器地址)0001	(<0005) D10A	(CRC 校验	CRC
	算法子程序详见 公司官网	0				

第2步: 仪表向主机返回相应寄存器数据:

仪表地址	功能代码	返回字节数(2个字节)	参数值	CRC16			
仪表向主机返回数据指令: 0103027FFFD834							
指令解释:	01(仪表地址)03(功能作	01 (仪表地址) 03 (功能代码) 02(返回 2 个字节的参数值)7FFF (返回的参数值) D834 (CRC 校验)					
	7FFF 转换成 10 进制为 32767						

(3) 向仪表第一路写入设定值 126

仪表地址	功能代码(固定 06) 寄存器地址(00xx)		参数值	CRC16		
主机向仪表发送读指令: 0106000604EC6A86						
指令解释:	7释: 01 (仪表地址) 06 (功能代码) 0006(设定值地址)04EC (参数值) 6A86 (CRC 校验)					
	注意 04EC 转换成 10 进制是 1260, 所有带小数点参数都要放大 10 倍, 如 12.5 设定时要 125					

3、仪表各种寄存器地址列表:

名称	是否有小数点	寄存器绝对地址	保持寄存器地址(西门子 PLC)				
测量值(PV)	YES	1001H~1006H(6 路)	44098~44103(6 路测量值)				
主控输出	NO	1101H~1106H	44354~44359				
报警输出	NO	1201H~1206H	44610~44615				
一级菜单(参看表 4-	1)						
LOCK	NO	0000H	40001				
CF	NO	0005H	40006				
第1路参数(参看表	4-1 二级菜单)						
SP1~ UTL1	-	0006H~001BH	40007~40028				
第2路参数(参看表	4-1 二级菜单)						
SP2~ UTL2	-	001CH~0031H	40029~40050				
第3路参数(参看表	4-1 二级菜单) 2 路	表忽略以下列表					
SP3~ UTL3	-	0032H~0047H	40051~40072				
第4路参数(参看表	第 4 路参数(参看表 4-1 二级菜单)						
SP4~ UTL4	-	0048H~005DH	40073~40094				

4、通信常见问题:

- 1). 仪表未对上位机读写指令作出响应?
 - . 仪表通信地址 ADDR 是否正确, CRC 校验码是否算正确, 指令格式是否正确
 - . 仪表限制每条指令只能读 20 个寄存器, 不允许连写寄存器
 - . 如果从站有多台仪表,每次指令间隔时间是否大于 300ms
- 2). PLC (如西门子),触摸屏 (如台达),组态软件(如组态王)怎样同仪表通信?请扫下面二维码获取具体案例解说。
- 5. 带 MODBUS 协议的 PLC 触摸屏与仪表通信配置说明,请扫以下二维码或输入网址打开:

MODUBS-RTU 配置

6、CRC 校验算法子程序 C++:

```
void CRC16_S(byte[] data, int len)
          byte CRC16Lo;
          byte CRC16Hi;
                        //CRC寄存器
                                //多项式码&HA001
          byte CL; byte CH;
          byte SaveHi; byte SaveLo;
          int Flag;
          CRC16Lo = 0xFF;
          CRC16Hi = 0xFF;
          CL = 0x01;
          CH = 0xA0;
          for (int i = 0; i < 1en; i++)
              CRC16Lo = (byte)(CRC16Lo ^ data[i]); //每一个数据与CRC寄存器进行异或
              for (Flag = 0; Flag <= 7; Flag++)
                  SaveHi = CRC16Hi;
                  SaveLo = CRC16Lo;
                                                 //高位右移一位
                  CRC16Hi = (byte)(CRC16Hi >> 1);
                  CRC16Lo = (byte) (CRC16Lo >> 1);
                                                    //低位右移一位
                  if ((SaveHi & 0x01) == 0x01) //如果高位字节最后一位为1
                     CRC16Lo = (byte)(CRC16Lo | 0x80); //则低位字节右移后前面补1
                               //否则自动补0
                  if ((SaveLo & 0x01) == 0x01) //如果LSB为1, 则与多项式码进行异或
                     CRC16Hi = (byte)(CRC16Hi ^ CH);
CRC16Lo = (byte)(CRC16Lo ^ CL);
          //如果是modbus协议的话,应该是第一位是低位,第二位是高位
          data[len++] = CRC16Lo;
                                    //CRC低位
          data[len] = CRC16Hi;
                                  //CRC 高位
       }
```

附 4: 仪表测量值记录功能即无纸记录(选配功能):

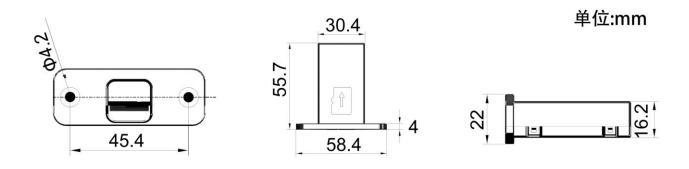
本记录仪是一款插 TF 内存卡保存记录的设备。可与本仪表配套使用,即可实现温度、湿度、液位、压力等采样信号的实时记录,最小记录间隔为 1 秒即为 1 秒 1 记录。

本记录仪主要应用于记录食品、医药品、化学用品等产品的存储的温度湿度数据记录,广泛应用于仓储、冷库、药品库、阴凉库、实验室。

记录仪自动记录生成 CSV 文本,可以用 EXECL 软件直接双击打开并查阅。记录数据也可以通过我司配套软件生成数据报表或数据曲线,配套软件在公司网站有下载。

技术指标:

记录保存方式: TF 内存卡 (小 SD 手机内存卡)


记录间隔:最小间隔为1秒一记录最大间隔为1小时一记录。

记录容量: 1G 的 TF 卡可保存约 15,768,000 条以上记录,即一秒一条记录可持续记录数据 1 年以上。目前市面主流 TF 卡大小一般为 16G~128G 不等。

工作环境: 温度 $0\sim60.0^{\circ}$,相对湿度不大于 85%的无腐蚀性气体及无强电磁干扰的场所

电源: 仪表给予记录仪供电(5v)

记录仪外形尺寸:

记录仪使用说明:

- 1. 接线:记录仪为四线制,四条线分别标为:5V、DSR、DRR、GND,按仪表接线图依次将四条线接到仪表的5V、DSR、DRR、GND 接线端上。
- 2. 通电: 仪表上电工作,记录仪即进入工作状态。
- 3. 记录: 上电后记录仪上插入 TF 卡, 即进入记录模式
- 4. 记录间隔时间设定: 表 4-1 参数代码及符号,找到 ADDR 这项参数,参数值 1 即代表间隔 1 秒,参数值最大可设为 3600 秒即 1 小时。
- 5. 系统时间设定界面进入:

记录仪和仪表正常工作后,在仪表上同时按住▼、▲两键即进入时间设定界面。仪表数码管会依次显示年、 月、日、时、分、秒的英文符号如下表 3-1,参数值修改方法请参考**五、基本设置及操作**。

表附 3-1

序号	符号	英文	名 称	说 明	取值范围	出厂值
1	YERr	YEAR	年	设置年份参数	2000~2099	_
2	ñŁH	MTH	月	设置月份参数	00~12	
3	487	DAY	日	设置日期参数	00~31	_
4	Kour	HOUR	时	设置小时参数	00~23	_
5	ñln	MIN	分	设置分钟参数	00~59	_

五、记录仪状态指示灯说明:

- 1. 正常状态:绿灯亮,红灯只在写入数据时快闪一下。
- 2. 记录仪和仪表连接失败:绿灯一亮一灭。
- 3. 记录仪和仪表受到干扰时: 红灯和绿灯同时或交替一亮一灭。
- 4. 记录仪没有 TF 卡或 TF 卡异常: 红灯一亮一灭。

附 5: 仪表选型手册:

规格	多路电流输出温控仪选型手册							
型号	KC							
尺寸	96×96mm 开孔尺寸:92×92mm	MA						
通道数	4 通道		LCD4					
报警继电器	无报警继电器							
	1 组报警继电器			1				
输入类型	热电偶: K, E,J, R, T, 热电阻: Pt100, Cu50	热电偶: K, E,J, R, T, 热电阻: Pt100, Cu50						
	线性电压: 0 - 5V, 1 - 5V 或 线性电流: 0 - 10mA, 4 - 2	0mA DC			Α			
	以上两种信号都支持即支持热电偶、热电阻和模拟量信息	号(每路需打	旨定输入	类型)	М			
主控输出	模拟量输出 4-20mA 或 0-10v(可切换成 PID 控制或变迹	送输出)				Α		
供电电源	100 - 240V AC							
通信方式	RS-485(MODBUS-RTU)	RS-485(MODBUS-RTU)						RS
	RS-232(MODBUS-RTU)	RS-232(MODBUS-RTU)						RX
	带无纸记录接口							LG

你的担心我们用心,精创品质与你共同见证